Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 71(5): 374-379, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2315364

RESUMEN

Screening for bioactivity related to anti-infective, anti-methicillin-resistant Staphylococcus aureus (MRSA) and anti-viral activity, led us to identify active compounds from a methanol extract of Litsea japonica (Thub.) Juss. and the hot water extract of bark of Cinnamomum sieboldii Meisn (also known as Karaki or Okinawa cinnamon). The two main components in these extracts were identified as the catechin trimers (+)-cinnamtannin B1 and pavetannin B5. Moreover, these extracts exhibited anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity. The structures of these catechin trimers were previously determined by chemical and spectroscopic methods. Pavetanin B5 has never been reported to be isolated as a pure form and has been obtained as a mixture with another component. Although other groups have reported the putative structure of pavetannin B5, preparation of the methylated derivative of pavetannin B5 in this study allowed us to obtain the pure form for the first time as the undecamethyl derivative and confirm its exact structure. Commercially available (+)-cinnamtannin B1 and aesculitannin B (C2'-epimer of cinnamtannin B1) both of which contained pavetannin B5 as a minor component, and C. sieboldii bark extract (approx. 5/2 mixture of (+)-cinnamtannin B1/pavetannin B5) were assessed for anti-SARS-CoV-2 activity. Both C. sieboldii bark extract and commercially available aesculitannin B showed viral growth inhibitory activity.


Asunto(s)
COVID-19 , Catequina , Cinnamomum , Staphylococcus aureus Resistente a Meticilina , Catequina/farmacología , Corteza de la Planta/química , SARS-CoV-2 , Extractos Vegetales/química
2.
Molecules ; 25(8)2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1450861

RESUMEN

(1) Background: Viral respiratory infections cause life-threatening diseases in millions of people worldwide every year. Human coronavirus and several picornaviruses are responsible for worldwide epidemic outbreaks, thus representing a heavy burden to their hosts. In the absence of specific treatments for human viral infections, natural products offer an alternative in terms of innovative drug therapies. (2) Methods: We analyzed the antiviral properties of the leaves and stem bark of the mulberry tree (Morus spp.). We compared the antiviral activity of Morus spp. on enveloped and nonenveloped viral pathogens, such as human coronavirus (HCoV 229E) and different members of the Picornaviridae family-human poliovirus 1, human parechovirus 1 and 3, and human echovirus 11. The antiviral activity of 12 water and water-alcohol plant extracts of the leaves and stem bark of three different species of mulberry-Morus alba var. alba, Morus alba var. rosa, and Morus rubra-were evaluated. We also evaluated the antiviral activities of kuwanon G against HCoV-229E. (3) Results: Our results showed that several extracts reduced the viral titer and cytopathogenic effects (CPE). Leaves' water-alcohol extracts exhibited maximum antiviral activity on human coronavirus, while stem bark and leaves' water and water-alcohol extracts were the most effective on picornaviruses. (4) Conclusions: The analysis of the antiviral activities of Morus spp. offer promising applications in antiviral strategies.


Asunto(s)
Antivirales/farmacología , Coronavirus/efectos de los fármacos , Morus/química , Extractos Vegetales/farmacología , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Antivirales/uso terapéutico , Línea Celular , Efecto Citopatogénico Viral/efectos de los fármacos , Flavonoides/farmacología , Humanos , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Picornaviridae/efectos de los fármacos , Corteza de la Planta/química , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química
3.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1282518

RESUMEN

The usefulness of anti-inflammatory drugs as an adjunct therapy to improve outcomes in COVID-19 patients is intensely discussed in this paper. Willow bark (Salix cortex) has been used for centuries to relieve pain, inflammation, and fever. Its main active ingredient, salicin, is metabolized in the human body into salicylic acid, the precursor of the commonly used pain drug acetylsalicylic acid (ASA). Here, we report on the in vitro anti-inflammatory efficacy of two methanolic Salix extracts, standardized to phenolic compounds, in comparison to ASA in the context of a SARS-CoV-2 peptide challenge. Using SARS-CoV-2 peptide/IL-1ß- or LPS-activated human PBMCs and an inflammatory intestinal Caco-2/HT29-MTX co-culture, Salix extracts, and ASA concentration-dependently suppressed prostaglandin E2 (PGE2), a principal mediator of inflammation. The inhibition of COX-2 enzyme activity, but not protein expression was observed for ASA and one Salix extract. In activated PBMCs, the suppression of relevant cytokines (i.e., IL-6, IL-1ß, and IL-10) was seen for both Salix extracts. The anti-inflammatory capacity of Salix extracts was still retained after transepithelial passage and liver cell metabolism in an advanced co-culture model system consisting of intestinal Caco-2/HT29-MTX cells and differentiated hepatocyte-like HepaRG cells. Taken together, our in vitro data suggest that Salix extracts might present an additional anti-inflammatory treatment option in the context of SARS-CoV-2 peptides challenge; however, more confirmatory data are needed.


Asunto(s)
Antiinflamatorios/farmacología , Aspirina/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Extractos Vegetales/farmacología , Antiinflamatorios/química , Alcoholes Bencílicos/metabolismo , COVID-19/virología , Células CACO-2 , Ciclooxigenasa 2/efectos de los fármacos , Citocinas/metabolismo , Dinoprostona/metabolismo , Glucósidos/metabolismo , Células HT29 , Humanos , Inflamación , Leucocitos Mononucleares/efectos de los fármacos , Lipopolisacáridos/inmunología , Corteza de la Planta/química , Extractos Vegetales/química , SARS-CoV-2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA